1 Agriculture: The efficiency of land use

• Share of agriculture in employment is close to 50% for the world as a whole (50% in China, 57% in India).

• Is land used efficiently?

1.0.1 Farm size and productivity: observed relationship

• Farm size productivity differences: see table.

• Profit-Wealth ration and weather variability (monsoon outset is a measure of the risk faced by the farmer): see figure
– The Profit-Wealth ratio is always greater for small farmers

– Small farmers’ profits are hurt much more by uncertainty than large farmers’
1.0.2 Why is this surprising?

- Arguments for increasing returns (the opposite relationship)
 - Technology with fixed costs (tractors, etc.)
 - Larger farmers have better access to capital
 - Larger farmers have better access to politically allocated inputs (evidence from Africa in a book by Bates “Market and states in tropical Africa”).
 - The best farmer will have more land...

- Mitigating factors:
 - Rental markets in farm machinery
 - Technological change in not very rapid. Saviness not that important.
1.0.3 What could be going on: Arguments for decreasing returns

- Agency problems: large farms are cultivated by hired labor, which has fewer incentive to work hard. Small farms are owner cultivated. ⇒ Redistributing land will create more owner cultivated land which will be more productive.

- But why cannot the owner of the land not give the right incentive to the farmers?
1.0.4 Different potential explanations for the observed inverse productivity relationship:

- Differences in land quality

- Differences in farmer characteristics

- Incentive Problems

Problem with the observed relationship: all of this could be going on... How can we separate these different effects.
1.0.5 Evidence: Study by Biswanger and Rosenzweig

- Using ICRISAT data: very detailed panel (repeated observation for every household) data from India.

- Some individuals cultivate both an owner-operated plot and a rented plot.

- Biswanger and Rosenzweig compare the inputs they apply on their own plot and the rented plots, and the overall productivity of both plots.

\[\Pi_{ij} = \alpha + \beta R_{ij} + \eta_i + \nu_{ij}, \]

- where \(\Pi_{ij} \) is farmer’s \(i \) outcome (profit, investment) on plot \(j \), and \(R_{ij} \) indicate whether the plot is rented. \(\eta_i \) is the unoberved (but fixed)
characteristics of the farmers (risk aversion, quality, etc...). We think that η_i and R_{ij} may be correlated, but, for a minute, not v_{ij} and R_{ij}. What can we do?

- Control for the individual fixed effect to compare plots within individual’s. So for example, for all the farmers that cultivate two plots of land, we can run the regression:

 $$\Pi_{i2} - \Pi_{i1} = \beta (R_{i2} - R_{i1}) + v_{i2} - v_{i1},$$

- The individual fixed effect is gone!

Biswaenger and Rosenzweig find a strong negative β. What does this suggest? What could be the remaining problem?
1.0.6 More evidence: Shaban (1987)

- Uses the same data, but controls in addition for plot quality.

- He finds that individual work 40% more on their own land (controlling for land size) and that the productivity is 15% to 30% higher on own land than on rented land (with or without controlling for land quality).

- On balance, the evidence suggests that the inefficiency comes from incentive problems.
A Model of Share-cropping
A MODEL OF SHARE-CROPPING

1. Suppose there is a landlord who owns a plot of land which he himself cannot crop. In each period he employs exactly one tenant to crop the land. The tenant’s outside option is \(m \).
A MODEL OF SHARE-CROPPING

1. Suppose there is a landlord who owns a plot of land which he himself cannot crop. In each period he employs exactly one tenant to crop the land. The tenant’s outside option is m.

2. Suppose in each period output can take on two values, $Y_H = 1$ (‘high’ or ‘success’) and $Y_L = 0$ (‘low’ or ‘failure’) with probability e and $1 - e$ respectively. The tenant chooses e, (‘effort’), which costs him ce^2. The realizations of output are independent over time.
A MODEL OF SHARE-CROPPING

1. Suppose there is a landlord who owns a plot of land which he himself cannot crop. In each period he employs exactly one tenant to crop the land. The tenant’s outside option is m.

2. Suppose in each period output can take on two values, $Y_H = 1$ (‘high’ or ‘success’) and $Y_L = 0$ (‘low’ or ‘failure’) with probability e and $1 - e$ respectively. The tenant chooses e, (‘effort’), which costs him $ce^2/2$. The realizations of output are independent over time.

3. First best maximizes: $e - ce^2/2 \rightarrow e = 1/c$
The key assumptions of this model are:
The key assumptions of this model are:

- The tenant has no wealth and cannot save. He does however have an outside income of w, so that the least he can get paid in any period is $-w$. In other words, the landlord faces a limited liability constraint.
The key assumptions of this model are:

➜ The tenant has no wealth and cannot save. He does however have an outside income of w, so that the least he can get paid in any period is $-w$. In other words, the landlord faces a limited liability constraint.

➜ The tenant’s effort choice e is non-contractible.
The key assumptions of this model are:

- The tenant has no wealth and cannot save. He does however have an outside income of w, so that the least he can get paid in any period is $-w$. In other words, the landlord faces a limited liability constraint.
- The tenant’s effort choice e is non-contractible.
- At first assume that the contract is one-period contract: (h, l).
The key assumptions of this model are:

- The tenant has no wealth and cannot save. He does however have an outside income of w, so that the least he can get paid in any period is $-w$. In other words, the landlord faces a limited liability constraint.
- The tenant’s effort choice e is non-contractible.
- At first assume that the contract is one-period contract: (h, l).
- What are possible contracts?
ANALYSIS OF THE MODEL
ANALYSIS OF THE MODEL

→ The tenant maximizes: \(he + (1 - e)l - \frac{ce^2}{2} \)
ANALYSIS OF THE MODEL

The tenant maximizes: \(h e + (1 - e) l - \frac{ce^2}{2} \)

F.O.C: \(e = \frac{h - l}{c} = \frac{r}{c} \)
ANALYSIS OF THE MODEL

→ The tenant maximizes: $he + (1 - e)l - \frac{ce^2}{2}$

→ F.O.C: $e = \frac{(h - l)}{c} = \frac{r}{c}$

→ The landlord maximizes:
ANALYSIS OF THE MODEL

➜ The tenant maximizes: \(he + (1 - e)l - \frac{ce^2}{2}\)

➜ F.O.C: \(e = \frac{(h - l)}{c} = \frac{r}{c}\)

➜ The landlord maximizes:

\[
e - e(h - l) - l = [1 - r]\frac{r}{c} - l
\]

subject to LL: \(l \geq -w, \text{ and}\)

P: \(l + \frac{r^2}{c} - \frac{r^2}{2c} \geq m\)
The tenant maximizes:

\[he + (1 - e)l - \frac{ce^2}{2} \]

F.O.C.:

\[e = \frac{(h - l)}{c} = \frac{r}{c} \]

The landlord maximizes:

\[e - e(h - l) - l = [1 - r] \frac{r}{c} - l \]

subject to LL:

\[l \geq -w, \text{ and} \]

P:

\[l + \frac{r^2}{c} - \frac{r^2}{2c} \geq m \]

Case 1: P does not bind: Then \(l = -w, r = 1/2, e = 1/2c \). This happens when \(1/8c \geq m + w \)
ANALYSIS OF THE MODEL

→ The tenant maximizes: \(he + (1 - e)l - \frac{ce^2}{2} \)
→ F.O.C: \(e = (h - l)/c = r/c \)
→ The landlord maximizes:

\[
e - e(h - l) - l = [1 - r]r/c - l
\]
subject to LL: \(l \geq -w, \) and
P: \(l + r^2/c - r^2/2c \geq m \)

→ Case 1: P does not bind: Then \(l = -w, r = 1/2, e = 1/2c. \) This happens when \(1/8c \geq m + w \)
→ Case 2: LL and P both bind: Then \(r = \sqrt{2c(m + w)} \) and \(e = \sqrt{2(m + w)/c}. \) Holds as long as \(\sqrt{2(m + w)/c} \leq 1/c, \) i.e. \(m + w \leq 1/2c. \)
ANALYSIS OF THE MODEL

- The tenant maximizes: \(he + (1 - e)l - \frac{ce^2}{2} \)
- F.O.C: \(e = \frac{(h - l)}{c} = r/c \)
- The landlord maximizes:

\[
\begin{align*}
 e - e(h - l) - l &= [1 - r]r/c - l \\
 \text{subject to LL:} & \\
 l &\geq -w, \text{ and} \\
 \text{P:} & \\
 l + r^2/c - r^2/2c &\geq m
\end{align*}
\]

- Case 1: P does not bind: Then \(l = -w, r = 1/2, e = 1/2c \). This happens when \(1/8c \geq m + w \)
- Case 2: LL and P both bind: Then \(r = \sqrt{2c(m + w)} \) and \(e = \sqrt{2(m + w)/c} \). Holds as long as \(\sqrt{2(m + w)/c} \leq 1/c \), i.e. \(m + w \leq 1/2c \).
- Case 3: Only P binds: \(m + w \geq 1/2c. e = 1/c. \)
OBSERVATIONS
OBSERVATIONS

→ Does the tenant earn the marginal product of his effort? Does he work as hard he would in the first best?
OBSERVATIONS

→ Does the tenant earn the marginal product of his effort? Does he work as hard he would in the first best?

→ Is he paid his outside option?
OBSERVATIONS

→ Does the tenant earn the marginal product of his effort? Does he work as hard he would in the first best?

→ Is he paid his outside option?

→ What happens to effort when w goes up? What does this tell us? Tenancy ladder...
OBSERVATIONS

→ Does the tenant earn the marginal product of his effort? Does he work as hard he would in the first best?
→ Is he paid his outside option?
→ What happens to effort when w goes up? What does this tell us? Tenancy ladder...
→ What happens to effort when m goes up? What does this tell us? Empowerment...
OBSERVATIONS

→ Does the tenant earn the marginal product of his effort? Does he work as hard he would in the first best?
→ Is he paid his outside option?
→ What happens to effort when w goes up? What does this tell us? Tenancy ladder...
→ What happens to effort when m goes up? What does this tell us? Empowerment...
→ What happens to contract when c goes up? What does this tell us?
OBSERVATIONS

→ Does the tenant earn the marginal product of his effort? Does he work as hard he would in the first best?

→ Is he paid his outside option?

→ What happens to effort when w goes up? What does this tell us? Tenancy ladder...

→ What happens to effort when m goes up? What does this tell us? Empowerment...

→ What happens to contract when c goes up? What does this tell us?

→ Suppose that some people own 1 plot of land and some own 5. People can work 1 plot each. The rest are tennated. What is the size productivity relationship?
OTHER VIEWS OF SHARE-CROPPING:
OTHER VIEWS OF SHARE-CROPPING:

- Risk versus moral hazard (Stiglitz):
OTHER VIEWS OF SHARE-CROPPING:

- Risk versus moral hazard (Stiglitz):
 - Who becomes a tenant?
OTHER VIEWS OF SHARE-CROPPING:

- Risk versus moral hazard (Stiglitz):
 - Who becomes a tenant?
 - Version A: The more risk-averse by instinct.
 - Version B: The poor, who are more risk-averse by virtue of being poor.
OTHER VIEWS OF SHARE-CROPPING:

→ Risk versus moral hazard (Stiglitz):
 → Who becomes a tenant?
 → Version A: The more risk-averse by instinct.
 → Version B: The poor, who are more risk-averse by virtue of being poor.
 → Can it explain S-P relation?
Other Views of Share-Cropping:

- Risk versus moral hazard (Stiglitz):
 - Who becomes a tenant?
 - Version A: The more risk-averse by instinct.
 - Version B: The poor, who are more risk-averse by virtue of being poor.
 - Can it explain S-P relation?

- Two-sided moral-hazard (Eswaran-Kotwal)
OTHER VIEWS OF SHARE-CROPPING:

➜ Risk versus moral hazard (Stiglitz):
 ➜ Who becomes a tenant?
 ➜ Version A: The more risk-averse by instinct.
 ➜ Version B: The poor, who are more risk-averse by virtue of being poor.
 ➜ Can it explain S-P relation?

➜ Two-sided moral-hazard (Eswaran-Kotwal)
 ➜ Relative skills determine who becomes a tenant.
 ➜ Can it explain S-P relation?
OTHER VIEWS OF SHARE-CROPPING:

- Risk versus moral hazard (Stiglitz):
 - Who becomes a tenant?
 - Version A: The more risk-averse by instinct.
 - Version B: The poor, who are more risk-averse by virtue of being poor.
 - Can it explain S-P relation?

- Two-sided moral-hazard (Eswaran-Kotwal)
 - Relative skills determine who becomes a tenant.
 - Can it explain S-P relation?

- Irrelevance of contractual form (Cheung)
LAND REFORMS
LAND REFORMS

→ Suppose we took land from the landlord and made over the ownership to the tenant. What will be the effect on productivity under:
Suppose we took land from the landlord and made over the ownership to the tenant. What will be the effect on productivity under:

1. Limited liability moral hazard
Suppose we took land from the landlord and made over the ownership to the tenant. What will be the effect on productivity under:

1. Limited liability moral hazard
2. Risk aversion moral hazard, version A
Suppose we took land from the landlord and made over the ownership to the tenant. What will be the effect on productivity under:

1. Limited liability moral hazard
2. Risk aversion moral hazard, version A
3. Risk aversion moral hazard, version B
Suppose we took land from the landlord and made over the ownership to the tenant. What will be the effect on productivity under:

1. Limited liability moral hazard
2. Risk a version moral hazard, version A
3. Risk a version moral hazard, version B
4. Two sided moral hazard
Suppose we took land from the landlord and made over the ownership to the tenant. What will be the effect on productivity under:

1. Limited liability moral hazard
2. Risk a version moral hazard, version A
3. Risk a version moral hazard, version B
4. Two sided moral hazard
5. Cheung
2 Where do we stand?

- From the policy point of view it is very important that we develop a methodology for sorting between these different models.

- Banerjee-Gertler-Ghatak find evidence that tenancy reforms increase productivity using a difference-in-difference approach but the effect they find is perhaps too large (60-70% increase in productivity resulting from an increase in the tenant’s share from 1/2 to 3/4. What else could have going on?

- The literature has emphasized the importance of secure property rights. Goldstein-Udry show direct evidence for this. Field also shows some evidence that insecurity affects labor supply.

- The literature also talks about tradeable rights (Field, Besley) but the evidence there is not particularly compelling yet, despite Hernando De Soto.
• Are there advantages to make these rights non-tradeable? For example, might it change the balance of power within the family.

• Is there an ownership effect—are people somewho more enthused when they feel that it is their land?

• More generally, agriculture seems like a place where behavioral economics needs to arrive: learning seems very slow, risk aversion very high (Duflo-Kremer-Robinson, Conley-Udry).