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Abstract

Air quality was extremely poor in Indonesia in late 1997 due to smoke from massive
wildfires (which had been set intentionally to clear agricultural land but ran ram-
pant). This paper examines the impact this episode of air pollution had on infant
and fetal mortality. Infant and fetal death are inferred from “missing children” in the
2000 Indonesian Census; by analyzing subdistrict-birthyear-birthmonth cohorts, one
can exploit the detailed timing and spatial patterns of the pollution. Exposure to
higher levels of airborne smoke, especially during the last trimester in utero, is asso-
ciated with a substantial decline in the size of the surviving cohort. The fire-induced
pollution caused a 1.0% decrease in cohort size (or over 16,400 missing children),
averaged across Indonesia for the five-month period of high exposure. Indonesia’s
baseline under–2 mortality rate was about 6%, so if pollution mainly caused infant
rather than fetal deaths, the estimates would represent up to a 17% effect. Prenatal
exposure seems to have a larger effect on boys, while postnatal exposure has a larger
impact on girls, suggesting different physiological vulnerabilities and possibly gender
discrimination. In addition, pollution has much larger effects in poorer areas.
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1 Introduction

Between September and November 1997, forest fires raged through large parts of Indonesia,

destroying over 12 million acres. Most of the fires, which were concentrated on the islands of

Sumatra and Borneo (Kalimantan), were started intentionally by logging companies, palm

oil producers, or small farmers clearing land to plant new crops or trees.1 Because of the

dry, windy conditions and delayed rainy season caused by El Niño, the fires burned out of

control and spread rapidly. In November, rains finally doused the fires.

While the fires were burning, much of Indonesia was blanketed in smoke. This paper

examines infant and fetal mortality caused by the poor air quality. The daily level of

airborne smoke for different locations in Indonesia is available from satellite measurements.

The outcome, infant and fetal mortality, is inferred from “missing children” in the 2000

Census. This approach overcomes the problem that mortality records are unavailable for

Indonesia and survey data on infant mortality have small sample sizes. The paper finds

that higher levels of pollution are associated with substantial declines in the size of the

surviving cohort, and that it is exposure to pollution during the last trimester in utero

that has the largest impact on survival. The fire-induced increase in air pollution caused

a 1.0% decrease in cohort size, averaged across Indonesia for the five-month period of high

exposure. Indonesia’s under–2 mortality rate during this period was about 6%, so if the

effect of pollution operated mainly through infant deaths, this would represent up to a 17%

effect.

The estimates imply that over 16,400 infant and fetal deaths are attributable to the

fires. Cost estimates of the fires have focused mainly on destroyed timber, low productivity

during the pollution episode, lost tourism, and the like. These costs are estimated at $2 to

3 billion (Tacconi 2003). The health costs of the fires are likely much larger: Even if each

human life were valued at the modest amount of $100,000, the infant mortality costs alone

1The Indonesian Minister of Forestry estimated that “[commercial] plantations caused some 80% of the
forest fires,” and that small farmers practicing slash-and-burn harvesting caused the remainder (Straits
Times, September 3, 1997). Rabindran (2001), using satellite data on land use, finds that the 1997 inci-
dence of fires on commercial plantations was higher than the “natural” level (based on a benchmark from
conservation areas), but the incidence of fires on small farms was at its natural level.
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would be close to $2 billion.

There is also a striking amount of heterogeneity in the impact of pollution. The effect size

is much larger in poorer areas. Pollution has twice the effect in districts whose consumption

level is above the sample median compared to those below the median. Among possible

explanations, individuals in poorer areas could be more susceptible because they have lower

baseline health, or they could have less access to health care. There is suggestive evidence in

support of these hypotheses. Pollution causes more mortality in areas with fewer medical

facilities and personnel. In addition, people who also are exposed on a daily basis to

indoor air pollution might suffer more acute health effects from the added pollution from

the wildfires, and the estimated effects are indeed larger in areas where more people use

wood-burning stoves. A third hypothesis is that it is urbanization that matters because in

rural areas people are more likely to work outdoors, or there are fewer and less effective

information campaigns advising the public on precautions to take, for example. However,

the heterogeneity by income is in fact not explained by the rural versus urban distinction.

Pollution also has differential effects by gender. Exposure during the month of birth and

months after birth has a larger impact on girls, possibly reflecting gender discrimination.

Parents might make more effort to shield their sons from pollution or seek medical care

for them. Prenatal pollution, on the other hand, seems to be somewhat more detrimental

to males, consistent with previous findings that male fetuses are physiologically less robust

than female fetuses.

The 1997 episode was extraordinary, but widespread fires are not a rarity in Indonesia

and in other countries, particularly in Southeast Asia, that use fire to clear land. In In-

donesia, illegal logging, which was made possible by lax enforcement of logging regulations,

was a contributing factor in the fires. The findings of this paper highlight a large cost of

such policies.

In addition, using the sharp timing of the Indonesian fires, one can isolate and iden-

tify the effects of pollution to answer broader questions about pollution and health. First,

individuals in developing countries are exposed to air pollution from several sources, and
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the estimates in this paper suggest that even at moderate levels of pollution, reductions

in pollution would save many infant lives. The wildfires are comparable in particular to

wood-burning stoves which produce a similar level and mix of pollutants when used in-

doors, a practice that is common in developing countries. Second, the paper finds that

exposure in utero is especially important. The previous literature has hinted at but not

firmly established this result. One policy implication may be that the priority of public

health efforts in response to pollution should be to target pregnant women. Third, people

in poorer areas, and perhaps infant girls as well, are particularly vulnerable to pollution.

The glass-half-full interpretation is that as communities make strides in economic devel-

opment and in the treatment of girls, the mortality effects of pollution could become less

severe. The glass-half-empty view is that, in the meantime, the health effects of pollution

in developing countries are regressive in addition to being large. While caution is warranted

when extrapolating from air pollution caused by the fires to other settings, the findings of

this paper likely have broader applicability.

The remainder of the paper is organized as follows. Section 2 provides background on

the link between pollution and health and on the Indonesian fires. Section 3 describes the

data and empirical strategy. Section 4 presents the results, and section 5 concludes.

2 Background

2.1 Link between air pollution and infant mortality

Related literature

A growing body of work examines the relationship between air quality and infant mortality,

primarily in the United States. Chay and Greenstone (2003b) use geographic variation in

the extent to which the 1980–81 recession lowered pollution in the United States and find

that better air quality reduces infant deaths. Chay and Greenstone (2003a) find that air

pollution abatement after passage of the Clean Air Act of 1970 led to a decline in infant

deaths.
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Currie and Neidell (2004) are able to examine how the timing of exposure to pollution

affects health by using California birth and death records. Using within-zipcode variation

over the 1990’s, they find evidence that exposure to pollution during the month of birth

causes infant mortality but find no effects on low birthweight, premature birth, or fetal

death. Like Currie and Neidell (2004), this paper looks closely at the timing of exposure

to pollution.2

In addition, there have been studies on primarily the adult health effects of Indonesia’s

1997 fires. Sastry (2002) examines the impact of the fires on mortality in nearby Malaysia

and finds increased mortality for older adults on the day following a high-pollution day.

Frankenberg, McKee, and Thomas (2004) study adult health outcomes with a differences-

in-differences approach that compares outcomes in 1993 and 1997 for areas with high versus

low exposure to the 1997 fires. They find that pollution from the fires reduced the ability

to perform strenuous tasks and other measures of health.

Physiological effects of pollution

Smoke from burning wood and vegetation, or biomass smoke, consists of very fine particles

(organic compounds and elemental carbon) suspended in gas. Fine particles less than 10

microns (µm) and especially less than 2.5 µm in diameter are considered the most harmful

to health because they are small enough to be inhaled and transported deep into the lungs.

For biomass smoke, the modal size of particles is between 0.2 and 0.4 µm, and 80 to 95%

of particles are smaller than 2.5 µm (Hueglin et al. 1997).

There are several possible pathways through which prenatal and postnatal exposure to

air pollution could affect fetal or infant health. Postnatal exposure can contribute to acute

respiratory infection, a leading cause of infant mortality. In utero exposure is hypothesized

to affect fetal development either because pollution inhaled by the mother and absorbed

into her bloodstream interferes with her health which in turn disrupts fetal nutrition and

2For research on pollution and infant mortality outside the U.S., see for example Bobak and Leon (1992)
on the Czech Republic, Loomis et al. (1999) on Mexico, and Her Majesty’s Public Health Service (1954)
on the 1952 London smog episode.
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oxygen flow, or because toxicants cross the placenta. Several studies find an association

between air pollution and retardation of fetal growth or shorter gestation period, both of

which are associated with lower birthweight. Recently, for example, Berkowitz et al. (2003)

examined New York City women who were pregnant during the World Trade Center disaster

on September 11, 2001, and found that intrauterine growth retardation was significantly

more prevalent among women who were near the WTC during the event compared to those

who were not.3 In addition, there is some evidence on the biological mechanisms behind

these pregnancy outcomes. One type of toxicant prevalent in biomass smoke is polycyclic

aromatic hydrocarbons (PAH). Air pollution has been associated with a greater prevalence

of PAH-DNA adducts on the placenta (PAH bound to DNA), which are a sign of damage

to the genome. PAH-DNA adduct levels, in turn, have been found to be correlated with

low birth weight and small head size (Perera et al. 1998, Topinka et al. 1997). In addition

to retarding fetal growth, in utero exposure to PAHs and other pollutants has been linked

to increased risk of infant leukemia (Alexander et al. 2001).

2.2 Description of the Indonesian fires

Even the dry season in Indonesia, which occurs from July to September, is typically wet.

Monthly dry season rainfall averages about 10 centimeters (cm) in both Sumatra and Kali-

mantan, the Indonesian part of Borneo. (See Figure 1 for a map of Indonesia.) However, the

dry season in 1997 was particularly dry. Figure 2 compares the monthly rainfall recorded

at a meteorological station in South Sumatra for 1997 and previous years. The 1997 dry

season was both severe and prolonged: rainfall in July, August, and September was lower

than usual, and the rainy season was delayed until November. Similarly, 30 cm of rainfall

were recorded in East Kalimantan for the 12 months beginning in April 1997 compared to

the typical amount of 270 cm.

Fires are commonly used in Indonesia to clear land for cultivation, and the dry season is

3International evidence on adverse pregnancy outcomes associated with particulate matter includes
Dejmek et al. 1999 on the Czech Republic and Wang et al. 1997 on China, among others.
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considered an opportune time to set fires because the vegetation burns quickly. Industrial

farmers clear land for replanting forests as palm trees, and many small farmers rotate among

several plots using swiddening techniques in which land is cleared, cultivated, and then left

fallow for several years. In addition, logging companies are thought to have set some virgin

forests on fire in order to degrade the land so that the government would designate the land

as available for logging.

With expansion of the timber and palm oil industries in Indonesia, many tracts of

forestland have become commercially developed, and logged-over land is more prone to

fires than pristine forest.4 Roads running through forests act as conduits for fire to spread,

and with the canopy gone, the ground cover becomes drier and more combustible and wind

speeds are higher. In addition, because logging firms were taxed on the volume of wood

products that left the area, they often left behind waste wood, even though it had economic

value as fertilizer or wood chips. This left-behind wood made the forest more susceptible

to fast-spreading fires.5

In September 1997, because of the dry conditions, the fires spread out of control. The

Indonesian government made some attempt to fight the fires, but the efforts were ineffective.

The fires continued until the rains arrived in November. In southeastern Kalimantan but

not the rest of Indonesia, fires started anew in March 1998 after the rainy season ended.

The fires were concentrated on the island of Sumatra and in Kalimantan. Estimates

are that up to 12 million acres burned, 8 million acres in Kalimantan (12% of its land

area) and 4 million in Sumatra (4% of its area). The practice of clearing land with fire

is used throughout Indonesia, and the El Niño conditions affected the rest of Indonesia

as well. What set Sumatra and Kalimantan apart is that Indonesia’s forests and other

types of land most susceptible to rampant fires are mainly in these areas. The majority of

4The timber industry arose in 1967 when the new Suharto government began encouraging foreign in-
vestment and passed the Basic Forestry Law which gave the central government authority to grant logging
concessions. The palm oil industry also began in the late 1960’s and grew rapidly through the mid-1990’s.
In 1996 forest products accounted for 10% of Indonesia’s gross domestic product, and Indonesia supplied
about 30% of the world palm oil market (Barber and Schweithhelm 2000, Ross 2001).

5See Barber and Schweithhelm (2000) for a comprehensive account of how commercial practices may
have contributed to the fires.

6



crop plantations are located in Sumatra, and plantations are a fast-growing use of land in

Kalimantan. Timber operations are also primarily in these regions.

The location of the smoke tracked the location of the fires, though due to wind patterns,

not perfectly. Figure 3 shows satellite images of the pollution over Indonesia between

September and November. Fires were concentrated on the southern parts of Sumatra and

Kalimantan, and these two areas experienced the most pollution. There was relatively little

smoke over Java while the northern half of Sumatra was heavily affected, though there were

few fires in either area.

The level of pollution reached in Indonesia was equivalent to smoking several packs of

cigarettes a day. A common measure of particulate matter is PM10, the concentration of

particles less than 10 µm in diameter. The U.S. Environmental Protection Agency has set

a PM10 standard of 150 micrograms per cubic meter (µg/m3). This is the 24-hour average

that should not be exceeded in a location more than once a year. In September 1997, PM10

levels reportedly reached as high as 3000 µg/m3 in Sumatra and Kalimantan. In the hardest

hit areas, pollution surpassed 1000 µg/m3 on several days and exceeded the EPA standard

of 150 µg/m3 for long periods (Ostermann and Brauer 2001, Heil and Goldmammer 2001).

The levels of pollution caused by the wildfires are comparable to levels caused by indoor

use of wood-burning stoves. The daily average pollution level from wood-burning stoves,

which varies depending on the dwelling and duration of use, ranges from 200 to 5000 µg/m3

(Ezzati and Kammen 2002).

A second common measure of pollution is the Pollution Standards Index (PSI) which

is a composite measure of carbon monoxide, nitrogen dioxide, sodium dioxide, ozone, and

PM10. The PSI scale runs from 0 to nominally 500, with a level above 400 considered life-

threatening to ill and elderly people. PSI levels of over 500 were recorded in Indonesia on

several days during September to November 1997. One reason the Indonesian fires produced

so much pollution is that many of the fires were peat fires which produce large amounts of

smoke.6

6Less important for immediate health effects but of possibly long-term environmental consequences, the
fires released a large amount of carbon into the atmosphere. The fires were one cause of the unusually large
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3 Empirical Strategy and Data

3.1 Empirical model and outcome measure

The goal of the empirical analysis is to examine whether air pollution has an effect on fetal

or infant death. Ideally, there would be data on all pregnancies indicating which ended in

fetal or infant death, and the following equation would be estimated:

Survivejt =β1Smokejt + δt + αj + εjt. (3.1)

The variable Survivejt is the probability that fetuses whose due date is month t and whose

mothers reside at the time of the fires in subdistrict j survive to a certain point, such as

live birth, one year, etc. The prediction is that β1 is negative, or that exposure to smoke

reduces the probability of survival.

In practice, mortality records are unavailable for Indonesia, and survey data on infant

mortality are not feasible for the analysis because the samples are too small to examine

month-to-month fluctuations or geographic variation in pollution. For example, the 2002

Demographic and Health Survey sample has on average 1 birth and 0.05 recorded child

deaths per district-month for the affected cohorts. The Census population module, a long-

form survey administered to a sample of 2000 Census respondents, records approximately

7 births and 0.3 deaths per district-month. Survey data on infant mortality are generally

considered poor in quality, as well.

Thus, the approach I take is to infer fetal and infant mortality by measuring “missing

children.”7 The outcome measure is the cohort size for a subdistrict-month calculated from

the complete 2000 Census of Population for Indonesia. The estimating equation is

ln(CohortSize)jt =β1Smokejt + β2PrenatalSmokejt + (3.2)

β3PostnatalSmokejt + δt + αj + εjt.

jump in atmospheric carbon dioxide levels between 1997 to 1998 (Page et al. 2002).
7The literature on “missing women” in developing countries, most often associated with Sen (1992),

uses population sex ratios to infer excess female mortality caused by gender discrimination.
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The dependent variable, ln(CohortSize)jt, is the natural logarithm of the number people

born in month t who are alive and residing in subdistrict j at the time of the 2000 Census.

Smokejt is the pollution level in the month of birth, and the variables PrenatalSmokejt

and PostnatalSmokejt are included to explore the different timing of exposure, as discussed

below. To obtain parameters that represent the average effect for Indonesia, each observa-

tion is weighted by the subdistrict’s population (the number of people enumerated in the

Census who were born in the twelve months prior to the sample period).

The main advantage of inferring deaths by counting survivors is that one can used data

for the entire population, instead of a sample. Also, the outcome variable measures fetal

deaths in addition to infant deaths, albeit without distinguishing between the two outcomes;

most surveys do not collect data on fetal deaths. Finally, population counts may be better

measured than infant mortality because of underreporting of infant deaths and recall error

on dates of deaths.

There are several potential concerns about inferring mortality from survivors, however.

Since the data come from a cross-section of survivors in June 2000, the outcome represents

a different length of survival for individuals born at different times, and the mean level of

survival will differ by cohort, independent of the fires. For a cohort born in December 1997

around the time of the fires, the outcome is survival until age one and a half. For a younger

cohort born in May 1998, the outcome is survival until age two, and for an older cohort

born in December 1996, the outcome is survival until age two and a half.8 The inclusion of

birthyear-birthmonth (hereafter, month) fixed effects in the regression will control for any

average differences in survival by cohort.9

In addition, if pollution affects the duration of pregnancies, then missing children might

result from the shifting of births from certain months to other months. For example, if

exposure to smoke induces preterm labor, then one would expect to see an excess of births

followed by a deficit of births. In section 4.2, I examine and am able to reject the conjecture

8As shorthand I describe deaths of children in the sample as infant mortality even though they could
occur as late as age two and a half. The common definition of infant mortality is deaths before age one.

9One advantage of observing survival over a year after the due date is that if the deaths occur as
stillbirths or neonatal deaths, the estimates are less likely to reflect simply short-term “harvesting.”
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that the results are an artefact of changes in gestation period.

There are also potential empirical concerns not unique to using ln(CohortSize) as the

dependent variable. First, pollution might affect not only mortality but also fertility. This

would influence the population counts for the later “control” cohorts and could lead to

sample selection problems even if mortality were directly measured. In order that the control

cohorts are uncontaminated by fertility effects, I restrict the sample to births occurring no

more than eight months after the outbreak of the fires. The last individuals in the sample

are those born in May 1998. Second, an implicit assumption in the empirical model is

that it is exposure to pollution just before or just after birth that affects mortality. The

motivation for this model are findings from previous research that exposure near the time

of birth has significant health effects. However, exposure to pollution earlier in a pregnancy

or later after birth also could affect health. If the control cohorts are in fact also treated,

though less intensely, then the results would underestimate the true effects.

A third important concern arises from the fact that individuals are identified by their

subdistrict of residence in 2000 rather than the subdistrict where their mother resided

during the end of her pregnancy or just after giving birth. If families living in high-smoke

areas with children born around the time of the fires were more likely to leave the area

(either during the fires or afterwards), then cohort size would be smaller in affected areas.

Fortunately, one can partially allay the concern by analyzing data at the district level since

the Census collects the district of birth and the district of residence in 1995. As discussed in

section 4.2, the results are identical using birthplace, current location, or mother’s location

in 1995.

Table 1 presents the descriptive statistics for the sample. The sample comprises monthly

observation between December 1996 and May 1998 (18 months) for 3751 subdistricts (ke-

camatan). Of this starting sample size of 67,518 observations, 64 observations are dropped

because the cohort size for the subdistrict-month is 0.10 There are on average 96 surviving

10The Census covers 3962 subdistricts which make up 336 districts. For subdistricts dropped from the
sample, either the latitude and longitude could not be determined or there were no enumerated children for
more than 15% of the monthly observations due to missing data or very small subdistrict size. In addition,
I drop four districts that make up Madura since the East Javanese island received a large influx of return
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children per month in the sample. Note that the larger administrative units in Indonesia

are districts (kabupaten), of which there are 324 in the sample, and provinces, of which

there are 29.

3.2 Verification that Census counts track infant mortality

As a preliminary analysis, I verify that population counts from the Census track data on

births and infant deaths from the 2002 Demographic and Health Survey (DHS). The log

of the number of surviving children should increase one-for-one with the log of total births

and should decrease one-for-one with the infant mortality rate (as can be derived with a

few steps of algebra). Thus, I estimate

ln(CohortSize)JT = α + γ1ln(Births)JT + γ2IMRJT + εJT (3.3)

where J is a province and T is a quarter, Births is the number of children born in the

province-quarter, and IMR (infant mortality rate) is the fraction of those children who

died by June 2000 when the Census was taken.11 As mentioned above, very few births per

subdistrict-month are sampled in the DHS, so I aggregate to provinces and quarters. In

addition, I use a longer panel from 1988 to 1999. Note that ln(Births) varies not only with

the number of births in the province-quarter but also with the DHS sampling rate for the

province, but the IMR variable should not be affected by this potential problem.

Table 2 presents the results of this validation exercise. In column 1, the coefficient on

IMR is -1.3 and the coefficient on ln(Births) is 1.6, which are surprisingly close to the

predictions of -1 and 1, given the crudeness of the exercise. In column 2, each observation is

a province-quarter-gender, and in column 3, a province-month. The coefficients remain on

the order of -1 and 1 but become smaller in magnitude, which is consistent with downward

migrants in 1999 (in response to ethnic violence against them in Kalimantan), and also the province of
Aceh where separatist violence is thought to have affected the quality of the Census enumeration. The
results are also robust to dropping Irian Jaya, another area where unrest could have affected data quality.

11The comparison would be better if the DHS also recorded pregnancies that ended in fetal deaths because
some of the missing children in the Census are not among the live births measured by the DHS.
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bias from measurement error when a smaller and hence noisier cell size is used. In short,

variation in population counts in the Census indeed tracks variation in the number of births

and, importantly for this study, variation in the infant mortality rate.

With these results in hand, if one compares equation 3.3 to the estimating equation 3.2,

one of the key identifying assumptions becomes apparent. In using ln(CohortSize) as a

proxy for the infant mortality rate, in order to obtain unbiased estimates of the effect of

pollution on infant mortality, it must be the case that conditional on subdistrict and month

fixed effects, pollution is not correlated with ln(Births). This seems like a reasonable

assumption since it is unlikely that there are large fluctuations in fertility that coincide

with the air pollution from the fires both spatially and temporally. Even area-specific trends

could not explain the patterns since the sample includes time periods both before and after

the fires; any omitted fertility shift would have to be a short-term downward or upward

spike in particular regions. Furthermore, section 4.2 directly tests whether demographic

shifts could explain the results and finds that fluctuations in predicted fertility do not seem

to be a confounding factor.

3.3 Pollution measure

The measure of air pollution is the aerosol index from the Earth Probe Total Ozone Mapping

Spectrometer (TOMS), a satellite-based monitoring instrument. The aerosol index tracks

the amount of airborne smoke and dust and is calculated from the aerosol optical depth,

or the amount of light that microscopic airborne particles absorb or reflect. The TOMS

aerosol index has been found to match quite closely data collected by ground-based pollution

monitors (Hsu et al. 1999). Ground-based data on suspended particulates are not available

for Indonesia for this period. The aerosol index runs from -2 to 7, with positive values

representing absorbing aerosols (dust and smoke); for positive values, a higher value is

more smoke.12

The TOMS data set contains daily aerosol measures (which are constructed from obser-

12Negative values represent non-absorbing particulates such as sulfates.
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vations taken over three days) for points on a 1◦ latitude by 1.25◦ longitude grid. Adjacent

grid points are approximately 175 kilometers (km) apart. The probe began collecting data

in mid-1996, and the data I use begin in September 1996. For each subdistrict, I calculate

an interpolated daily pollution measure that combines data from all TOMS grid points

within a 100-km radius of the geographic center of the subdistrict, weighted by the inverse

distance between the subdistrict and the grid point. The number of TOMS grid points

that fall within the catchment area of a subdistrict ranges from 1 and 6 and is on average

4. The mean distance between a subdistrict’s center and the nearest grid point is 50 km.

The monthly measure is calculated as the median of the daily values, and I also consider

the mean of the daily values and the number of days that exceed a (somewhat arbitrary)

threshold value of 0.3.

Whereas there are over 3700 subdistricts in the data, there are only 226 unique pollution

grid points used. Interpolation adds variation at a finer grain spatially, but uncorrected

standard errors would still overestimate how much independent variation there is in the

pollution measure. Moreover, in addition to the non-independence of the pollution variable

that arises from interpolation, the actual pollution level is spatially correlated. Therefore I

allow for clustering of errors among observations within an island group by month. There

are 10 island groups in the sample (Sumatra, Java, Sulawesi, Kalimantan, Bali, West Nusa

Tenggara, East Nusa Tenggara, Irian Jaya, Maluku, North Maluku).

The estimating equation (3.2) includes the pollution level in the month of birth (Smokejt)

as well as lags of Smokejt which measure exposure in utero, and leads which measure expo-

sure after birth. Note that Smokejt measures both prenatal and postnatal exposure, with

the balance depending on when in the calendar month an individual is born (the Census

did not collect the specific date of birth, only the month). It becomes difficult to separately

identify each lag and lead with precision, so the main specification uses an average of the

pollution level for the three months before the birth month (PrenatalSmokejt) and after

the birth month (PostnatalSmokejt). The population-weighted mean values of Smoke,

PrenatalSmoke, and PostnatalSmoke are 0.09, 0.10, and 0.07, as shown in Table 1. On
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average, the pollution index exceeds 0.3 on 17% of days.

During the months of the fires, September to November 1997, the mean aerosol index

for Indonesia was 0.58. For the same months in 1996, the mean was 0.05. Similarly, the

mean level of the PrenatalSmoke was 0.37 for the most affected cohorts (births in October

1997 to February 1998) while during the same months a year earlier, the mean was 0.03.

These gaps are helpful when interpreting the magnitudes of the regression coefficients and

quantifying the impact of the fires.

The intensity of smoke also varied across Indonesia during the fires. Figure 4 shows the

average smoke by month for Kalimantan and Sumatra which were the hardest hit regions

and for the rest of Indonesia. Kalimantan, in addition to being the most affected area in

late 1997, also experienced another episode of smoke in early 1998 after the rainy season

ended. Figure 5 plots the corresponding outcome data, that is, the aggregate cohort size

(seasonally adjusted) for Kalimantan, Sumatra, and the rest of Indonesia. Cohort size

is noisy, but the raw data foreshadow the regression results. In Sumatra and especially

Kalimantan, there is a dip down among cohorts born just after the fires, suggesting that

prenatal exposure to the smoke led to mortality. The regression analysis presented below,

which uses more spatial variation in pollution and controls for month and subdistrict fixed

effects, finds similar results.

3.4 Other variables

Several other variables are used in the analysis as controls or to examine differential effects

of pollution, i.e., as interaction terms. First, I construct a measure of the financial crisis

that hit Indonesia in late 1997. Cross-sectional variation in the crisis is measured as the

1996 to 1999 ratio of the median log food consumption per capita in a district. The variable

is constructed so that it is larger in areas hit harder by the crisis. The consumption data are

from the National Socioeconomic Survey (SUSENAS), a large household survey conducted

annually by the national statistics bureau. The survey is representative at the district rather

than subdistrict level, so data are aggregated to the district. The data appendix describes
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in more detail how the consumption measure is constructed. The national consumer price

index for food is from the central bank and is used as a measure of temporal variation in

the crisis. The interaction of these two variables is the crisis measure.

In addition, the cross-sectional measure of consumption in 1996 is interacted with the

pollution variables to examine how the effects of pollution differ for richer and poorer areas.

Measures of the health care system, such as the number of doctors and maternity clinics

per capita, as well as the type of fuel people cook with are also used. These variables are

from the 1996 Village Potential Statistics (PODES), a census of infrastructure and other

community characteristics. The PODES has an observation for each of over 66,000 localities

which I aggregate to the subdistrict level. In the analyses that use data from the PODES or

SUSENAS, the sample size is 63,158 since some Census subdistricts could not be matched

to the surveys.

4 Results

4.1 Relationship between exposure to smoke and mortality

Table 3, column 1, presents the relationship between cohort size and exposure to smoke. The

independent variables are Smoke, which is pollution in the month of birth, PrenatalSmoke

which is pollution in the three months before birth, and PostnatalSmoke which is pollution

in the three months after birth. The results in column 1 suggest that prenatal exposure

to pollution decreases the number of surviving children in a cohort. PrenatalSmoke has

a coefficient of -0.035 that is statistically significant at the 1% level. The coefficient for

Smoke is very close to 0, while the coefficient for PostnatalSmoke is -0.014 but statistically

insignificant. Standard errors are clustered within an island-month. In column 2, when

PrenatalSmoke is the only variable in the regression (besides fixed effects), the coefficient

is similar to that in column 1.13 Columns 3 and 4 consider alternative monthly pollution

13See Table A1 in the appendix for an instrumental variable estimate of the effect of PrenatalSmoke on
cohort size. The instrument for PrenatalSmoke is a dummy for Kalimantan or Sumatra interacted with a
dummy for October 1997 to January 1998. The differences-in-differences estimate, which uses only coarse
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measures, first, the mean rather than median of the daily pollution values and, second,

the proportion of days with high pollution (aerosol index above 0.3). The mean pollution

gives nearly identical results as the median value, with exposure in the quarter after birth

having a negative impact on cohort size that is marginally statistically significant. For the

proportion of days with high pollution, the point estimate implies that when there are 3

additional high-smoke days in a month (an increase of 10 percentage points), cohort size

decreases by 0.9%.

Exposure to pollution in utero is associated with a decrease in fetal and infant survival.

To interpret the magnitude of the effect, note that PrenatalSmoke was higher by 0.33

during October 1997 to February 1998 compared to the same calendar months a year

earlier; this five-month period are the cohorts for whom PrenatalSmoke includes a month

during the fires. Multiplying that gap by the coefficient of -0.035 suggests that the fires led

to a 1% decrease in cohort size. A more precise way to estimate the total effect is to use the

coefficient for PrenatalSmoke and calculate what the population would have been for each

subdistrict if during the period during and immediately after the fires, PrenatalSmoke

had taken on its value from 12 months earlier. Aggregated over the five months for the

3751 subdistricts, this calculation similarly implies a population decline of 1.0%, or 16,439

missing children. Indonesia’s baseline under-2 mortality rate was roughly 60 per 1000 live

births at this time, based on government statistics.14 If the effects of pollution were due

exclusively to infant deaths, the estimates would represent a 17% effect; if the effects were

due in equal parts to infant and fetal deaths, the coefficient would imply an 8% effect.

The welfare implications of mortality caused by the pollution depend on the counter-

factual of how long the children would have lived. One way of gauging whether the results

could be due to “harvesting” is to compare the baseline under-2 and under-5 mortality

rates for Indonesia. A little more than 1% of children who survive until age 2 die by age 5.

To attribute the 1% effect to harvesting, essentially all deaths between age 2 and 5 would

variation in pollution attributable to the fires, is -0.040.
14See Table A2 for infant mortality statistics. I assume that half of the additional deaths between age 1

and age 5 occur before age two.
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have to have been moved forward to the time of the fires. Moreover, by most standards

decreasing a child’s life by two to five years would be a significant welfare loss.

Figure 7 shows the nonparametric relationship between third-trimester exposure and

cohort size. The effect of pollution appears to be linear for the most part. There is some

evidence of a steeper relationship at high levels of pollution, though the data are sparse in

this region and the nonlinearities are imprecisely estimated.

The next regressions use the pollution level in each of the three months preceding and

following birth, rather than aggregated for a quarter. Table 3, column 5, reports the results

using the median pollution level. For prenatal exposure (lags of Smoke), the effect is

strongest two months before the month of birth. For postnatal exposure (leads of Smoke),

the effect is strongest immediately after birth, though the estimates are imprecise. The

next two columns repeat the exercise using the month’s mean pollution and the proportion

of days that have high pollution. The general pattern of the point estimates for postnatal

pollution remain the same, but, interestingly, the pattern for prenatal exposure is a bit

different for each of the pollution measures. Using the mean level (column 6), exposure in

the month immediately preceding month has the strongest negative relationship with cohort

size, while using high-smoke days (column 7), exposure three months before birth has the

strongest effect. One interpretation of these patterns is that at different points during

gestation, fetuses are more vulnerable to sustained versus short-term, intense smoke. A

likelier interpretation is that there is not enough precision to determine at this finer grain

how the timing of exposure affects survival. Thus, for the rest of the analysis, I focus on

the three-month measures of prenatal and postnatal exposure.

4.2 Effect of smoke on mortality versus alternative hypotheses

The results in Table 3 suggest that exposure to smoke in utero caused infant and fetal

deaths, but there are other possible explanations for the results. This section considers

some alternative explanations.

17



Migration

The Census identifies respondents by their subdistrict of current residence, but a fetus

or infant’s exposure to pollution depends on where the family resided during the fires.

Migration could be a reason that cohorts with the highest prenatal exposure to pollution

are smaller. Women who were in the third trimester of pregnancy during the fires could

have been especially likely to migrate away from affected areas, either while pregnant or

after giving birth. Fortunately, the Census collects information on the district (though not

subdistrict) where an individual was born and where he or she lived five years earlier that

enables one to probe this concern.

To examine the extent of pollution-induced migration that occurs after birth, I repeat

the main analysis by district of birth. Cohort size is aggregated to the district level, and

the pollution measure for the district is a population-weighted average of the subdistrict

measure. The regression is weighted by the district population in the year preceding the

sample period. For comparison, column 1 of Table 4 presents results by district of residence,

and column 2 presents results by district of birth. The results are nearly identical to

each other, as well as to the subdistrict-level analysis, in terms of both point estimates

and precision. Between-district migration after the birth of the infant is not the likely

explanation for the relationship between pollution and cohort size.

This finding does not rule out pollution-induced migration that takes place before the

infant is born. If some women spent most of their third trimester of pregnancy in the

hardest-hit areas but migrated away before giving birth, then neither place of residence in

2000 nor place of birth would accurately reflect the fetus’ location during the fires, and

migration could still explain the results. While the Census did not ask respondents where

they resided in September to November 1997, it did ask where they lived in 1995. As long as

people do not migrate across districts repeatedly, this measure should be a good proxy for

where pollution-induced migrants lived at the time of the fires. Thus, to test for migration

that occurs before birth, I match infants to their mothers and repeat the estimate by the

district where the mother resided in 1995. The results, shown in column 3, are unchanged
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from the earlier estimates, offering reassurance that between-district migration either before

after birth is not an important confounding factor.

To gauge whether within-district migration could be driving the results, column 4 es-

timates a model with district-month fixed effects. The coefficient for PrenatalSmoke is

imprecise but the point estimate of -0.013 is smaller than in the main specification that

also used between-district variation (Table 3, column 1). In sum, migration cannot easily

account for the negative relationship between exposure to pollution and cohort size.

Fertility

The empirical approach interprets decreases in Ln(CohortSize) as increases in infant

deaths, but the surviving cohort also becomes smaller when births decline. It seems unlikely

that conceptions decreased nine months before the fires with a spatial pattern matching the

pollution from the fires, but this omitted variable concern also can be tested more directly.

To do so, I construct a measure of predicted births. First, I measure the percentage of

women of each age who give birth, using a time period not in the sample (namely, the

youngest cohorts in the Census, those born in 1999 through May 2000, so that survivors

most closely approximate births). I then apply these birth rates to the demographic compo-

sition of each district-month in the sample. This gives a predicted number of births based on

demographic shifts. (See the data appendix for further details.) Table 5, column 1, shows

the results when Ln(PredictedBirths) is included as a control variable. The coefficient of

survivors on births is predicted to be slightly less than 1, but because the measure is noisy,

the estimate may suffer from downward bias. The actual coefficient on predicted births is

0.35 and statistically indistinguishable from 1. Moreover, the coefficients on the pollution

variables are essentially unchanged with this control variable included. Fluctuations in fer-

tility, at least those caused by demographic shifts, do not appear to be a confounding factor

in the analysis.15

15Table A3 addresses another potential concern about fertility, namely that the seasonality of births
or deaths could happen to differ for areas more affected by the pollution, generating a spurious result.
As shown in columns 4 and 5, the results are robust to restricting the sample to the months with high
PrenatalSmoke plus the same calendar months one year earlier.
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Preterm births

Another hypothesis is that the missing children are not deaths, but rather shifts in the

duration of pregnancies. In particular, exposure to pollution may have induced preterm

births which are often associated with traumatic pregnancies. The reason this mechanism

could conceivably generate the results is that it is prenatal exposure that has a strong neg-

ative relationship with cohort size. Consider September 1997, the month the fires started.

Pollution levels were high in September but the value of PrenatalSmoke in September is

low, since there was no significant smoke in June, July, or August. In October, in con-

trast, PrenatalSmoke is higher since it incorporates the pollution in September. If infants

due in October were instead born in September, then births would have shifted from a

high-PrenatalSmoke month to a low-PrenatalSmoke month, generating a negative rela-

tionship between PrenatalSmoke and cohort size.16 To test the preterm-birth hypothesis,

I repeat the analysis excluding September 1997 from the sample. If the above hypothesis

were correct, the coefficient on Smoke would become more negative and the coefficient on

PrenatalSmoke would become less negative compared to the baseline results. As shown

in Table 5, column 2, this does not occur. The estimated coefficients are nearly identi-

cal between the full sample and the subsample, contrary to what one would expect if the

pollution had induced preterm births.17

Financial crisis

The Indonesian financial crisis began shortly after the 1997 episode of air pollution, as shown

in Figure 8, so a concern is that the analysis is attributing to air pollution deaths that were

caused by the crisis. To test this alternative hypothesis, a measure of the financial crisis

is added to the model. No monthly subdistrict-specific data on the crisis were collected,

16Considering only September, this phenomenon should also generate a positive correlation between
Smoke (pollution in the month of birth) and cohort size, but averaged with October and November which
have high values of both Smoke and PrenatalSmoke, the net effect is indeterminate.

17Table A3 restricts or expands the sample to several other time periods, and the results are robust to
the different sample definitions. One noteworthy finding is that the estimated effect of PrenatalSmoke is
smaller when the window is extended beyond 8 months after pregnancy, suggesting that the fires may have
reduced fertility as well.
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to my knowledge, so I construct a measure of the crisis by interacting a cross-sectional

measure, the inverse ratio of median income (consumption) at the height of the crisis in

1999 to median income before the crisis in 1996, and a time-series measure, the consumer

price index for food. The regression results can be anticipated by noting that the cross-

sectional correlation between the crisis measure and pollution in October 1997 (peak of

the fires) is 0.04; the spatial patterns of the crisis are not similar to the spatial patterns

of pollution from the wildfires. For regressions that use variables from the SUSENAS or

PODES surveys, a slightly smaller sample of subdistricts is used due to data availability.

Table 5, column 3, shows the regression results for the baseline model without additional

regressors and confirms that the subsample is similar to the full sample. Columns 4 shows

the results when the crisis variable contemporaneous to the month of birth is included

as a control variable. The estimated effect of PrenatalSmoke remains -0.032. The crisis

measure has been normalized to have a mean of zero and standard deviation of one for the

sample, so the crisis coefficient implies that a one standard deviation increase in the crisis

is associated with a 4.9% smaller cohort, though the coefficient is statistically insignificant

(and moreover could be due to migration rather than mortality). Column 5 instead uses

the average of the crisis measure for the three months following the month of birth. Since

the crisis accelerated a few months after the fires, this measure has more variation during

the time period of interest. The estimated effect of PrenatalSmoke on cohort size remains

unchanged.

Effect of pollution versus reduced-form effect of the fires

Another interpretation of the results is that they represent mortality effects of the fires

rather than specifically air pollution from the fires. The regressor is the pollution level,

and previous research gives one reason to expect that pollution causes infant mortality,

but, by and large, the smoke affected places nearby the sites of fires, and the fires could

have caused mortality through income effects, degraded food supply, and other channels.

One way to separate the effect of pollution from other effects of the fires is to compare
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Kalimantan and Sumatra, where the vast majority of fires occurred, to other parts of

Indonesia that experienced few fires but nevertheless were exposed to smoke. In Table 5,

column 6, the pollution variables are interacted with indicator variables for Kalimantan and

Sumatra. If it is other effects of the fires and not pollution that matters, the main effect

for pollution should be zero. The estimates are imprecise, but the point estimate for the

main effect of PrenatalSmoke is -0.022, about two thirds the magnitude seen earlier. The

PrenatalSmoke interaction term for Kalimantan is negative and of comparable size, while

the interaction terms for Sumatra are close to zero. While this test has limited power to

separately identify the effects in the regions with and without fires, it appears that there is

a negative relationship pattern between pollution and survival throughout Indonesia, with

perhaps larger effects in Kalimantan (consistent with the nonparametric relationship seen

in Figure 7).

4.3 Effects by gender and income

Gender

This section examines how the mortality effects of pollution vary for different groups. I

first test whether there are differential effects for boys and girls. Table 6, column 1, reports

results for a model in which the number of surviving boys and girls are totaled separately,

each observation is a subdistrict-month-gender, and the three pollution variables are inter-

acted with a dummy for male. The coefficients follow an interesting pattern. The male

interaction terms are positive for contemporaneous and postnatal smoke, but negative for

prenatal smoke. The more negative effect for boys in utero (30% larger effect) is impre-

cisely estimated but is consistent with findings in the literature that male fetuses are less

physiologically robust than female fetuses (Hassold, Quillen, and Yamane 1983, Jakobovits

1991). The more negative effect for girls in the month of birth and after birth could reflect

physiological differences as well. Girls could be more susceptible to respiratory infection

and other postnatal complications from pollution. The negative interaction effects for girls

are also consistent with gender discrimination. If parents are more likely to take steps to
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shield their male children from pollution or to seek medical treatment for acute respiratory

infection, for example, then one might expect the effects of pollution to be stronger for

girls.18 One signature of discrimination would be if the gender gap were larger for Muslim

children, a test that is merely suggestive but is motivated by an extensive literature that

documents excess female mortality in the Middle East and often attributes it to Islamic

traditions.19 In results not reported, the point estimates suggest that the gap is slightly

larger among Muslims, but the results are very imprecise and somewhat sensitive to the

specification used.

The smaller postnatal effects for boys also provide additional suggestive evidence against

migration as the explanation for the relationship between pollution and cohort size. Under

the assumption that parents favor boys, one would expect parents of boys to be more likely

to move away from hard-hit areas. Contrary to this prediction, the correlation of postnatal

exposure to pollution and cohort size is weaker for boys.

Income

The next estimates test whether the effects of pollution are more pronounced in poorer

places. People in poorer areas might have lower baseline health which makes them more

susceptible to pollution, have less access to health care, or have effectively more exposure to

pollution because they spend more time working outdoors or perform more strenuous tasks.

Column 2 of Table 6 uses food consumption as a proxy for income to examine this hypothe-

sis, interacting the pollution measures with a dummy variable for whether the subdistrict’s

median log consumption in 1996 is above the 50th percentile among all subdistricts. All

three of Smoke, PrenatalSmoke, and PostnatalSmoke are associated with smaller cohorts

for the bottom half of the consumption distribution, and the interaction terms for the top

18If the health effects of prenatal exposure assert their symptoms after birth, one would expect boys to
also be less affected by prenatal exposure. This effect on survival would offset any physiological disadvantage
of male fetuses.

19See Yount (2001) for a review of the literature on gender discrimination and excess female mortality
in Islamic countries. Besides Islam, the other common religions in Indonesia are Christianity, Hinduism,
and Buddhism. The gender gap for education in Indonesia, calculated from the 2000 Census, is larger
among Muslims. It is also worth noting that the main effect for male in column 1, which measures the
male-to-female sex ratio averaged across one- to two-year-olds, is 1.014 which is lower than most countries.
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half of the distribution are large and positive. The model estimated in column 2 appears

to be misspecified, however. Notice that the weighted average of the coefficients for the

bottom and top halves of the distribution would be more negative than the average effect

found earlier. The reason for this apparent paradox is that the month effects vary signifi-

cantly with income. As has been documented in the demography literature, seasonality in

fertility and infant mortality tends to be stronger and qualitatively different in poorer areas

(Lam and Miron 1991). Thus, column 3 includes separate month fixed effects for the top

and bottom halves of the consumption distribution and is the preferred specification. The

effect of prenatal exposure is large and negative when consumption is below the median.

In these areas, postnatal exposure is also statistically significant, with an effect size about

60% that of prenatal exposure. Each of the interaction coefficients for districts with above

median consumption is positive, and in the case of PrenatalSmoke, significant at the 1%

level. The effect of a one unit change in PrenatalSmoke is -0.06 for the top half of the

distribution and -0.13, or over twice as large, for the bottom half. The average log con-

sumption is 0.4 log points larger in the top half of the distribution compared to the bottom

half, so another way to view the results is that when consumption increases by 50% (e0.4),

the effect size decreases by 50%.

The fact that seasonal patterns in cohort size differ by consumption level also suggests

that including separate month effects for the two halves of the consumption distribution

might be the preferred specification even for estimating the average effect. As shown in

column 4, the average effect for prenatal smoke is now -0.069 and the coefficient for postnatal

smoke is -0.033, both twice as large as seen earlier in Table 3.

Finally, I further break down the income distribution into quartiles (and include month-

quartile fixed effects). Column 5 shows the separate coefficients by quartile, estimated

as one regression. The coefficient on PrenatalSmoke become successively more negative

moving from the top to the bottom quartile. The coefficients for the other smoke vari-

ables are imprecise, especially for the bottom two quartiles, and the point estimates do

not monotonically decline with consumption. The above- and below-median consumption
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levels, as opposed to a linear interaction term, seems to be the best way to parsimoniously

characterize the heterogeneity by income.

Effects by urbanization, wood-stove use, and health care facilities

There are several possible reasons for the income gradient in the effects of pollution, and

this subsection tests some hypotheses. It will be difficult to draw strong conclusions both

because the measures used below could be correlated with omitted variables and because

data are available to test only a limited number of hypotheses.

One hypothesis is that urban areas experienced smaller effects from the fires than rural

areas, and it is this fact that generates the heterogeneity by income. Urbanization itself

would only be a proximate cause, but one might think that in urban areas, housing stock

is less permeable to pollution, health care is better, and there is less outdoor employment.

On the other hand, pollution from the fires may have been particularly noxious in urban

areas where it mixed with industrial pollution from cars and factories. Column 1 of Table

7 interacts the pollution measures with the proportion of the population that is urban

(based on those born in the two years before the sample period). Only the coefficients

for PrenatalSmoke and its interaction terms are reported, but Smoke, PostnatalSmoke

and their interactions are also included as well as interactions of the pollution variables

with an indicator for above-median consumption. The effects of pollution do not vary by

urbanization level, suggesting that the offsetting effects described above may have cancelled

each other out. In unreported results, when the sample is divided into infants born to

mothers who work in agriculture, work in other industries, or do not work, it does not

appear that women who work in agriculture experience larger effects.

Next I test whether the effects depend on the prevalence of wood-burning stoves. Indoor

air pollution from wood-burning stoves has a similar composition and similar health effects

as pollution from the wildfires. If the health impact of pollution is convex in exposure, those

who have daily exposure to indoor pollution could suffer more acutely from the wildfires.

For each village or town, data are available on whether the majority of people used wood
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or other biomass as their primary cooking fuel in 1996. I construct for each subdistrict

the population-weighted average of this measure, which serves as a crude measure of what

proportion of people in the subdistrict use wood as their cooking fuel. The mean of the

variable is 0.64. As shown in column 2 of Table 7, wood fuel use is strongly associated with

negative effects from the wildfire smoke. A 20% decrease in wood fuel use reduces the net

effect of prenatal pollution by 0.03. By comparison, moving from the bottom half to the top

half of the consumption distribution (50% increase in consumption) reduces the effect of

prenatal pollution by 0.07. The obvious caveat to these results is that use of wood-burning

stoves could be proxying for an omitted variable.

Finally, I examine whether the effects vary with the availability of health care work-

ers and facilities in the area. A better health care system could lead to better baseline

health as well as better medical care for illness caused by the pollution. Most health care is

government-provided in Indonesia, but private care also plays a role. For example, mater-

nity clinics, which provide prenatal and postnatal care and sometimes inpatient childbirth

services, have expanded recently and an increasing share are privately run.

One empirical limitation is that the different health care measures are correlated with

each other which makes it difficult to separately identify the effects of each type of health

care input, so I consider a subset of measures that seem most likely to have an impact.

Table 7, columns 3 to 5, present the results when interactions of the pollution measures

with maternity clinics, doctors, and midwives per capita are successively included. The

per capita measures, which are for 1996, have been normalized to be mean 0, standard

deviation 1. In areas with more maternity clinics or doctors, pollution has a significantly

smaller effect on cohort size. The net coefficient for PrenatalSmoke is smaller by 0.03 in an

area with one standard deviation above the average number of maternity clinics compared

to the average area, and smaller by 0.05 in an area with one standard deviation above

average doctors per capita. These results are similar to the findings of Frankenberg (1995).

She examines within-village changes in the health sector between 1983 and 1986 and, using

household survey data, finds that infant mortality decreases when a village acquires more
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maternity clinics and doctors. The Indonesian government trained and deployed thousands

of midwives during the 1990’s, but, as seen in column 5, the number of midwives in an

area is not associated with smaller effects of pollution. This finding does not rule out that

midwives had a positive effect, since midwives may have been deployed to places that were

poorer or otherwise more vulnerable to pollution (though the midwife variable is nearly

uncorrelated with log consumption).

In column 6, the interactions with wood fuel use, doctors, and maternity clinics are

estimated in a single regression. The effects of in utero exposure to the wildfires continue

to be considerably larger when wood fuel use is higher. In addition, the interaction terms

for maternity clinics and doctors remain positive and, for maternity clinics, statistically

significant, though smaller in magnitude than when estimated separately. What is as note-

worthy about these results is that the interaction terms do not fully explain the differential

effects by income. There remains an unexplained positive interaction term for richer areas.

Better measures of indoor air pollution or access to health care might explain more of the

heterogeneity by income level. There are also potential channels not tested here. Mothers

and newborns in poorer areas might have poorer nutrition and hence lower baseline health.

Behavioral responses might differ by income with those in richer areas being more likely

to use surgical masks, avoid of strenuous activity, or temporarily evacuate to less affected

areas, for example.20 But regardless of the underlying reason, the differential effects by in-

come suggest that the mortality costs of pollution—and of the policies that contributed to

the 1997 Indonesian fires—were not only large but also inequitable, with a disproportionate

burden falling on the poor.

5 Conclusion

Air pollution from the land fires that engulfed Indonesia in late 1997 caused over 16,400

infant and fetal deaths, or a 1 percentage point decrease in survival for the affected cohorts.

20Kunii et al. 2002 surveyed 532 people during the fires and found that use of surgical masks among
adults was associated with less severe respiratory problems from the smoke.
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This paper exploits the sharp timing of the pollution and spatial variation across Indonesia

to identify these effects. The paper also finds clear patterns in how the timing of exposure

matters: in utero exposure to pollution has the largest effect on survival. At levels of

pollution that are typical both indoors and outdoors in many poor countries, pollution has

a sizeable effect on mortality.

Questions in developing countries sometimes go unstudied because the data are simply

not available. Research on the infant mortality effects of air pollution in the United States

makes use of linked natality-mortality records and ground-based pollution monitors. No

such data exist for Indonesia. To overcome this obstacle, this paper uses an unconventional

methodology. First, infant and fetal death are inferred from “missing children” in the 2000

Indonesian Census. While the indirect method introduces potential problems, the paper is

able to show that migration, changes in gestation period, and other potential concerns do

not seem to be driving the results. Second, in lieu of ground-based pollution data, pollution

data from a satellite-borne spectrometer are used. Because of the satellite’s global coverage,

the data cover even underdeveloped and remote areas.

The paper highlights two important ways in which environmental issues and economic

development interact. First, corruption, which is prevalent in Indonesia as in many develop-

ing countries, was an important driving force behind the catastrophic fires. The Indonesian

government turned a blind eye when large firms set fires in violation of the law and was

loathe to crack down even at the height of the fires. The Minister of Forestry was a lone

voice trying to hold companies accountable, and in late September he named 176 firms that

were suspected of illegally setting fires. However, the government never followed through

and in virtually no cases were timber licenses revoked or firms otherwise punished. In

fact, in an act brazen by even Suharto’s formidable standards of crony capitalism, in early

1998 he appointed his close associate Bob Hasan, a timber magnate who was outspoken

about blaming small farmers for the fires and absolving commercial interests, to take over

as Minister of Forestry. After the financial crisis, the IMF and World Bank required that

Indonesia reform its forest policies as a condition of its bailout, and Indonesia has since
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introduced some competitive bidding for timber concession rights and other improvements.

However, its environmental policies still have many problems, and Indonesia remains prone

to widespread fires.

The findings of the paper highlight a second link between the environment and economic

development: the health burden from pollutants falls disproportionately on the poor. The

estimated effect size is strikingly larger in poorer areas compared to richer areas. There is

some suggestive evidence that this heterogeneity could be because people in underdeveloped

areas use wood-burning stoves and face a compounded effect of indoor plus outdoor air

pollution. Part of the explanation also seems to be the limited access to health care in poorer

areas. For the most part, though, the underlying cause of the differential effects by income

is an open question. Another provocative pattern is that postnatal exposure to pollutants

has a larger impact on girls, which could be due to greater physiological vulnerability but

also raises the possibility of gender discrimination. Why the health effects of pollution

differ between rich and poor and between boys and girls is one area to pursue to better

understand how environmental degradation may create unique concerns and challenges in

developing countries.
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Data Appendix

Census data
Indonesia conducted a full Census of its population in June 2000. The dependent variable, the
cohort size for a subdistrict-month, is calculated by counting all enumerated people born in a
particular month who reside in the subdistrict. The specific date of birth is not available in the
Census. The population weight for each subdistrict is the total number of people born in 1994 to
1996 who are enumerated in the Census.

I link mothers to children for the analysis by mother’s 1995 residence and for constructing the
measure of predicted births. Using a household identifier, I link each child to women who are
14 to 42 years older than the child. When there are multiple matches, I give preference to
household heads or spouses of household heads and to women closer to the peak of the fertility
age distribution. To construct predicted fertility, I perform this matching for children born in 1999
and 2000 (through May) and calculate the mother-child age gap. Then for each age in months of
women between 14 and 42, I calculate the number of children these women give birth to divided
by the total number of women of that age. This gives the fertility rate (net of infant mortality)
for each age. I make two adjustments to the fertility rate. First I smooth the distribution using
values for the 4 ages in months before and after each data point. Second, after the age of 38,
I replace the estimate with a linear extrapolation from the estimated value at age 38 to 0 at
age 42. This corrects for the fact that the matching process mistakenly assigns grandmothers
as mothers in some cases, giving an unrealistic fertility rate for older ages. The next step is to
calculate the number of women by age for each district in the sample period, and multiply it by
the age-specific fertility rate. Summing across all the ages of women of childbearing age gives the
predicted number of births for each district-month in the sample.

TOMS pollution data
In addition to the information provided in the text, further details on the Total Ozone Mapping
Spectrometer can be found at http://toms.gsfc.nasa.gov.

SUSENAS data
I use household level data from the 1996 and 1999 SUSENAS core modules which aggregate item-
by-item consumption data to two categories, food and non-food. For each household, per capita
consumption is calculated weighting children by 0.75 and infants by 0.6 compared to adults who
are weighted by 1. The subdistrict log consumption measure is the median across all households
of log food consumption per capita.

PODES data
The PODES is a census of all villages and towns in Indonesia. I use the population, fuel use, and
health facilities questions for 1996. One question asks what cooking fuel the majority of the village
uses, where I group the answers as wood fuel (wood plus other biomass) or other, which is made
up of kerosene and gas. The population weighted average of this indicator variable across villages
in a subdistrict is the fuel use variable. Health care measures are unweighted per capita measures
for the subdistrict, based on the reasoning that people have access to facilities throughout the
subdistrict.
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Figure 1: Map of Indonesia
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Figure 2: Rainfall at Palembang Airport meteorological station, South Sumatra, 1990-97
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Figure 4: Timing and location of the pollution
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Figure 5: Fluctuations in cohort size by region

Cohort size is the total number of children enumerated in the Census, seasonally adjusted
using the two years before the sample period (that is, mean differences in log cohort size by
calendar month have been removed). The vertical bars demarcate September–November
1997, the period of the fires.
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Figure 6: Missing children attributable to the fires

The actual cohort size is the total number of children enumerated in the Indonesian Census,
by month of birth. The counterfactual uses the estimated coefficient for PrenatalSmoke
(Table 3, column 2) and calculates what the population would have been if during and
immediately after the fires, PrenatalSmoke had taken on its values from 12 months earlier.
Cohort size is seasonally adjusted (mean differences in log cohort size by calendar month
have been removed).
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Figure 7: Kernel regression of log cohort size on third-trimester pollution

The solid line is the relationship between log cohort size and pollution (PrenatalSmoke).
The dashed lines bound the bootstrapped 95% confidence interval, with errors clustered
within an island-month. The model estimated is a locally weighted non-parametric regres-
sion of log cohort size on pollution conditional on linear year and district fixed effects,
following Robinson (1988). Log cohort size has been offset by a constant so that its value
is 1 at an aerosol index of 0. The estimate is not weighted by population.
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Figure 8: Timing of the fires and the financial crisis
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Table 1

Descriptive Statistics

Mean Std. Dev.
Cohort size variables

Cohort size (for subdistrict-month) 95.6 89.7

Ln(cohort size) 4.8 .82

Pollution variables

Smoke (median daily value for month) .087 .424
Prenatal Smoke (Smoket-1,2,3) .095 .330

Postnatal Smoke (Smoket+1,2,3) .074 .342

Proportion of days with high smoke (aerosol index > .3) .169 .262

Average smoke (daily values averaged for the month) .120 .445

Mean of Smoke for Sept-Nov 1996 .048 .069

Mean of Smoke for Sept-Nov 1997 .578 .791

Mean of Prenatal Smoke for Oct 1996 - Feb 1997 .032 .052

Mean of Prenatal Smoke for Oct 1997 - Feb 1998 .365 .505

Other variables

% urban .57 .39

Ln(Predicted Births) 6.56 .91

Ln(median 1996 household food consumption) 10.52 .26

75th percentile 10.71

50th percentile 10.49

25th percentile 10.33

Median HH food consumption in 1996 / Median HH food 
consumption in 1998

.742 .070

National consumer price index (food) 1.131 .202

Wood as primary cooking fuel .636 .413

Doctors per 1000 people .161 .241

Midwives per 1000 people .366 .261

Maternity clinics per 1000 people .031 .050

the month of birth. Percent urban is based on those born in 1994 to 1996 and uses an indicator in the Census of whether the 
respondent's locality is rural or urban. The data appendix describes how Ln(Predicted Births) is constructed using demographic 
information. Median food consumption is a per capita measure for each household that uses data from the 1996 and 1999 
SUSENAS household survey, as described in the data appendix. Consumer price index is from the Indonesian central bank. 
Health care variables are calculated for each subdistrict using the 1996 PODES (survey of village facilities). PODES and 
SUSENAS data are available for 63158 observations. 

Notes: The sample consists of 67454 subdistrict-birthmonths from December 1996 to May 1998. Sample averages are weighted 
by population (the number of people enumerated in the Census born in the year before the sample period), except for cohort 
size for which the unweighted mean is shown. Cohort size is the number of people enumerated in the 2000 Census who were 
born in a subdistrict in a given month. Smoke is the monthly median of the daily TOMS aerosol index which is interpolated 
from TOMS grid points within 100 km of the subdistrict's geographic center and weighted by the inverse distance between the 
grid point and subdistrict center. Prenatal and Postnatal Smoke are averages of Smoke for the three months before and after 



Table 2

Comparison of Dependent Variable to Survey Data on Infant 
Mortality

Dependent variable: Log cohort size

Level of an observation

Quarter * 
province

Quarter * 
province * 

gender

Month * 
province

(1) (2) (3)

Infant Mortality Rate -1.34 -.83 -.54
(1.12) (.65) (.41)

Log births 1.60 1.11 .83
(.29) (.23) (.18)

Male -.01
(.02)

Observations 1248 2496 3742

Notes: The dependent variable is the log of the cohort size enumerated in the 2000 
Census. The independent variables are from the 2002 Demographic and Health 
Survey. Infant Mortality Rate is the number of children who have died by June 2000 
divided by all children born. Log births is all children born. There are 26 provinces in 
the sample, and the period covers 48 quarters from 1988 to 1999. In column 3, for 2 
of the potential 3744 observations, there are no births. Standard errors allow for 
clustering within a province.



Table 3

Relationship Between Air Pollution and Cohort Size

Dependent variable: Log cohort size

(2) (3) (5) (6)

Smoke -.0005 -.001 .008 .001 .018 -.001
(.006) (.007) (.030) (.009) (.014) (.031)

Prenatal Smoke (Smoket-1,2,3) -.035 *** -.032 *** -.032 ** -.089 **
(.012) (.011) (.013) (.041)

Postnatal Smoke (Smoket+1,2,3) -.014 -.016 * .001
(.009) (.010) (.034)

Smoket-1 -.010 -.028 * .006
(.009) (.016) (.032)

Smoket-2 -.023 *** -.006 -.036
(.008) (.013) (.029)

Smoket-3 -.003 -.005 -.055 *
(.013) (.015) (.030)

Smoket+1 -.010 -.019 -.022
(.009) (.014) (.030)

Smoket+2 -.005 -.003 -.020
(.008) (.014) (.027)

Smoket+3 .001 -.001 .002
(.009) (.012) (.026)

Observations 67454 67454 67454 67454 67454 67454 67454
Subdistrict and month FEs? Y Y Y Y Y Y Y

Statistic used for smoke measures

(7)

% high-
smoke days

% high-
smoke daysMedian Median Mean Median Mean

(1) (4)

Notes: Each observation represents a subdistrict-month. Standard errors, in parentheses below the coefficients, allow for clustering at the 
island-month level. *** indicates p<.01; ** indicates p<.05, * indicates p<.10. Observations are weighted by the number of individuals 
enumerated in the Census who reside in the subdistrict and were born in the year before the sample period.



Table 4

Distinguishing between Mortality and Migration

Dependent variable: Log cohort size

District of residence Within district-

Residence Birthplace
Mother's 1995 

residence

(1) (2) (3) (4)

Smoke -.002 .002 .002 -.007
(.006) (.006) (.006) (.014)

Prenatal Smoke -.035 *** -.037 *** -.038 *** -.013
(.012) (.012) (.012) (.020)

Postnatal Smoke -.013 -.015 -.016 -.0004
(.010) (.010) (.010) (.022)

Observations 5829 5829 5829 67454

Fixed effects

versus birth versus mother's 1995 residence month

Notes: In columns 1 to 3, each observation is a district-month. In column 4, each observation is a 
subdistrict-month. Standard errors, in parentheses below the coefficients, allow for clustering at the 
island-month level. *** indicates p<.01; ** indicates p<.05, * indicates p<.10. Observations are 
weighted by the number of individuals enumerated in the Census who reside in the subdistrict and 
were born in the year before the sample period.

month, district month, districtmonth, district district*month, 
subdistrict



Table 5

Alternative Hypotheses

Dependent variable: Log cohort size 

Smoke .001 .0001 .002 .002 .002 .001
(.006) (.009) (.006) (.006) (.006) (.028)

Prenatal Smoke -.035 *** -.035 *** -.032 *** -.032 *** -.033 *** -.022
(.012) (.013) (.011) (.011) (.011) (.037)

Postnatal Smoke -.014 -.013 -.012 -.012 -.013 .001
(.009) (.010) (.009) (.009) (.009) (.029)

Ln(Predicted Births) .350
(.278)

Smoke * Kalimantan .005
(.026)

Prenatal Smoke * Kalimantan -.023
(.036)

Postnatal Smoke * Kalimantan -.022
(.028)

Smoke * Sumatra -.008
(.026)

Prenatal Smoke * Sumatra .002
(.035)

Postnatal Smoke * Sumatra -.003
(.027)

Financial Crisis -.049
(.038)

Fin. Crisis in quarter after birth -.023
(.029)

Observations 67454 63703 63158 63158 63158 67454

Subdistrict and month FEs? Y Y Y Y Y

Effects for 
areas with and 
without fires

Excluding 
September 

1997

Control for 
predicted 
fertility

(1) (4) (5)

Control for financial crisis (no 
control, at birth and after birth)

Notes: Each observation represents a subdistrict-month. Standard errors, in parentheses below the coefficients, allow for clustering 
at the island-month level. *** indicates p<.01; ** indicates p<.05, * indicates p<.10. Observations are weighted by the number of 
individuals enumerated in the Census who reside in the subdistrict and were born in the year before the sample period. Predicted 
Births is constructed using the fertility rate by age and the number of women of different child-bearing ages within a district, as 
described in the data appendix.The financial crisis variable is standardized to have a mean of 0 and standard deviation of 1 for the 
sample.

(2) (6)(3)



Table 6

Effects by Gender and Income

Dependent variable: Log cohort size 

Smoke -.008 -.060 *** -.024 -.010 -.004 -.011 -.028 .002
(.007) (.021) (.016) (.007) (.009) (.010) (.024) (.045)

Prenatal Smoke -.030 ** -.158 *** -.129 *** -.069 *** -.058 *** -.076 *** -.094 ** -.121 **
(.012) (.037) (.028) (.013) (.018) (.017) (.047) (.061)

Postnatal Smoke -.019 * -.158 *** -.047 * -.032 *** -.025 -.040 *** -.046 .009
(.010) (.027) (.024) (.011) (.016) (.014) (.032) (.052)

Male .014 ***
(.003)

Smoke  * Male .016 ***
(.005)

Prenatal Smoke  * Male -.009
(.007)

Postnatal Smoke * Male .010
(.006)

Smoke  * High Consum. .066 *** .017
(.021) (.014)

Prenatal Smoke  * High Consum. .127 *** .072 ***
(.038) (.027)

Postnatal Smoke * High Consum. .161 *** .017
(.026) (.014)

Observations 134734 63158 63158 63158

Fixed effects included

(1)
Top quartile

subdistrict, 
month subdistrict, month*quartile of log consumption

Notes: Each observation represents a subdistrict-month. Standard errors, in parentheses below the coefficients, allow for clustering at the island-month level. 
*** indicates p<.01; ** indicates p<.05, * indicates p<.10. High consum. is an indicator that equals 1 if the district's median log food consumption is above 
the sample median. Observations are weighted by the number of individuals enumerated in the Census who reside in the subdistrict and were born in the 
year before the sample period.

3rd quartile 2nd quartile Bottom quart.

(5)

subdistrict, 
month * high 

cons.

<--------------------- one regression ----------------------->

<-------------------   63158   ----------------->

By gender

subdistrict, 
month

subdistrict, 
month * high 

cons.

By income (log consumption) of the district

(2) (3) (4)



Table 7

Effects By Urbanization, Wood Fuel Use, and Health Care Sector

Dependent variable: Log cohort size 

(2) (3) (4)

Prenatal Smoke -.121 *** .015 -.115 *** -.113 *** -.130 *** -.007
(.028) (.032) (.027) (.028) (.028) (.025)

Prenatal Smoke * Urbanization -.013
(.013)

Prenatal Smoke * Wood Fuel Use -.155 *** -.120 ***
(.036) (.026)

Prenatal Smoke * Matern. Clinic .030 *** .011 **
(.009) (.005)

Prenatal Smoke * Doctors .048 *** .016
(.015) (.013)

Prenatal Smoke * Midwives -.006
(.009)

Prenatal Smoke * High Consum .071 *** .048 * .058 ** .052 ** .073 *** .044 *
(.027) (.025) (.025) (.025) (.028) (.025)

Observations 63158 63158 63158 63158 63158 63158
Subdistrict and month FEs? Y Y Y Y Y Y

(6)(5)(1)

Notes: Each observation represents a subdistrict-month. Standard errors, in parentheses below the coefficients, allow for clustering at 
the island-month level. *** indicates p<.01; ** indicates p<.05, * indicates p<.10. All regressions also include Smoke and Postnatal 
Smoke and their interactions with the relevant variables for each column. Urbanization if the proportion of the population in urban 
localities and is based on 1994 to 1996 birth cohorts. Wood fuel use is an approximate measure of the proportion of people in the 
subdistrict who cook with wood fuel rather than kerosene and gas. Health variables are normalized to be mean 0, standard deviation 
1 for the sample. High consum. is an indicator that equals 1 if the district's median log food consumption is above the sample 
median. Observations are weighted by the number of individuals enumerated in the Census who reside in the subdistrict and were 
born in the year before the sample period.



Table A1

Instrumental Variables Estimation

Dependent variable Prenatal Smoke Log cohort size

(1) (2)

.724 ***
(.094)

Prenatal Smoke -.040 **
(.016)

Observations 67454 67454

Fixed effects month, 
subdistrict

F-statistic for instrument

First stage IV

Notes: Each observation is a subdistrict-month. Standard errors, in 
parentheses below the coefficients, allow for clustering at the island-month 
level. *** indicates p<.01; ** indicates p<.05. Observations are weighted by 
the number of individuals enumerated in the Census who reside in the 
subdistrict and were born in the year before the sample period.

(Sumatra or Kalimantan) * 
(Oct 97 to Jan 98)

month, 
subdistrict

59.0 n/a



Table A2

Population and Mortality Statistics for Indonesia

Annual Pop 
Growth

Pop Density 

(km-2)

1990 2000 1990-2000 2000 1990 1994 1997 1998 1990 1994 1997 1999

Indonesia 179,378,946 206,264,595 1.49 109 71 66 52 49 99 93 71 60

Provinces

Aceh 3,416,156 3,930,905 1.46 76 58 58 46 41 78 79 59 48

North Sumatra 10,256,027 11,649,655 1.32 158 61 61 45 43 82 97 72 52

West Sumatra 4,000,207 4,248,931 0.63 99 74 68 66 50 103 98 95 62

Riau 3,303,976 4,957,627 4.35 52 65 72 60 40 89 94 82 48

Jambi 2,020,568 2,413,846 1.84 45 74 60 68 45 102 88 82 55

Sumatera Selatan 6,313,074 6,899,675 2.39 74 71 60 53 51 98 92 70 62

Bengkulu 1,179,122 1,567,432 2.97 79 69 74 72 51 96 124 115 63

Lampung 6,017,573 6,741,439 1.17 191 69 38 48 49 96 58 64 60

Bangka Belitung n/a 900,197 0.97 56 n/a n/a n/a n/a n/a n/a n/a n/a

DKI Jakarta 8,259,266 8,389,443 0.17 12635 40 30 26 26 55 50 42 29

West Java 35,384,352 35,729,537 2.03 1033 90 89 61 56 129 120 77 69

Central Java 28,520,643 31,228,940 0.94 959 65 51 45 48 89 75 60 45

Yogyakarta 2,913,054 3,122,268 0.72 980 42 30 23 27 53 35 30 30

East Java 32,503,991 34,783,640 0.7 726 64 62 36 50 87 79 53 63

Banten n/a 8,098,780 3.21 936 n/a n/a n/a n/a n/a n/a n/a n/a

Bali 2,777,811 3,151,162 1.31 559 51 58 40 33 67 63 44 38

W. Nusa Tenggara 3,369,649 4,009,261 1.82 199 145 110 111 85 216 160 150 114

E. Nusa Tenggara 3,268,644 3,952,279 1.64 83 77 71 60 59 108 108 90 75

W. Kalimantan 3,229,153 4,034,198 2.29 27 81 97 70 56 114 135 88 71

Central Kalimantan 1,396,486 1,857,000 2.99 12 58 16 55 33 77 38 69 38

S. Kalimantan 2,597,572 2,985,240 1.45 69 91 83 71 67 130 111 87 86

East Kalimantan 1,876,663 2,455,120 2.81 11 58 61 51 34 78 76 66 39

North Sulawesi 2,478,119 2,012,098 1.33 132 63 66 48 39 86 83 61 46

Central Sulawesi 1,711,327 2,218,435 2.57 35 92 87 95 63 132 127 121 80

South Sulawesi 6,981,646 8,059,627 1.49 129 70 64 63 38 97 86 79 45

SE Sulawesi 1,349,619 1,821,284 3.15 48 77 79 78 53 108 105 94 66

Gorontalo n/a 835,044 1.59 68 n/a n/a n/a n/a n/a n/a n/a n/a

Maluku 1,857,790 1,205,539 0.08 26 76 68 30 48 107 91 48 50

North Maluku n/a 785,059 0.48 25 n/a n/a n/a n/a n/a n/a n/a n/a

Irian Jaya 1,648,708 2,220,934 3.22 6 80 61 65 55 113 88 92 69

Source: Badan Pusat Statistik (Statistics Indonesia); based on Census and Demographic Health Surveys

Infant Mortality Rate 
(per 1000 live births)

Under-5 Mortality Rate 
(per 1000 live births)Population



Table A3

Different Sample Periods

Dependent variable: Log cohort size 

Smoke -.003 -.004 -.009 * -.005 -.021 -.001
(.005) (.005) (.005) (.009) (.042) (.006)

Prenatal Smoke -.043 *** -.036 *** -.049 *** -.026 * -.030 ** -.026 **
(.012) (.012) (.012) (.014) (.014) (.012)

Postnatal Smoke -.023 *** -.012 -.026 *** .025 .038 -.006
(.009) (.010) (.008) (.030) (.032) (.009)

Observations 56220 56201 44967 33684 29933 78703

Subdistrict & month FEs? Y Y Y Y Y Y

Longer period

Notes: Each observation represents a subdistrict-month. Standard errors, in parentheses below the coefficients, allow for clustering 
at the island-month level. *** indicates p<.01; ** indicates p<.05, * indicates p<.10. Observations are weighted by the number of 
individuals enumerated in the Census who reside in the subdistrict and were born in the year before the sample period.

3/97 - 
5/98

12/96 - 
2/98

12/96 - 
2/98

(1) (2)

12/96 - 5/98

(6)(3) (4) (5)

Shorter periods Balanced calendar months

11/96 - 2/97 & 
10/97 - 2/98

11/96 - 2/97 & 
11/97 - 2/98




